Download Robustness and independence of voice timbre features under live performance acoustic degradations
Live performance situations can lead to degradations in the vocal signal from a typical microphone, such as ambient noise or echoes due to feedback. We investigate the robustness of continuousvalued timbre features measured on vocal signals (speech, singing, beatboxing) under simulated degradations. We also consider nonparametric dependencies between features, using information theoretic measures and a feature-selection algorithm. We discuss how robustness and independence issues reflect on the choice of acoustic features for use in constructing a continuous-valued vocal timbre space. While some measures (notably spectral crest factors) emerge as good candidates for such a task, others are poor, and some features such as ZCR exhibit an interaction with the type of voice signal being analysed.
Download Latent Force Models for Sound: Learning Modal Synthesis Parameters and Excitation Functions from Audio Recordings
Latent force models are a Bayesian learning technique that combine physical knowledge with dimensionality reduction — sets of coupled differential equations are modelled via shared dependence on a low-dimensional latent space. Analogously, modal sound synthesis is a technique that links physical knowledge about the vibration of objects to acoustic phenomena that can be observed in data. We apply latent force modelling to sinusoidal models of audio recordings, simultaneously inferring modal synthesis parameters (stiffness and damping) and the excitation or contact force required to reproduce the behaviour of the observed vibrational modes. Exposing this latent excitation function to the user constitutes a controllable synthesis method that runs in real time and enables sound morphing through interpolation of learnt parameters.